КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ АЛЬ-ФАРАБИ

Зарипова Ю.А.

РАДИОЛОГИЧЕСКИЕ ИЗМЕРЕНИЯ

Сборник лекций для студентов по направлению подготовки «Физические и химические науки»

СОДЕРЖАНИЕ

Лекция 1. Источники ионизирующих излучений.

Лекция 2. Основы ядерной физики.

- Лекция 3. Радиоактивность.
- Лекция 4. Ядерные реакции.
- Лекция 5. Взаимодействие радиоактивного излучения с веществом.
- Лекция 6. Физические основы дозиметрии.
- Лекция 7. Методы измерения ионизирующих излучений.
- Лекция 8. Стандарты и нормативные документы в области радиационного контроля.
- Лекция 9. Принцип работы радиометрических приборов радиационного контроля.
- Лекция 10. Принцип работы спектрометрических приборов радиационного контроля.
- Лекция 11. Радиационный мониторинг.

Лекция 2. Основы ядерной физики.

Цель лекции: сформировать у обучающихся базовое представление о структуре, свойствах и превращениях атомных ядер, а также об основных понятиях и законах ядерной физики.

Введение: Ядерная физика - наука о строении, свойствах и превращениях атомного ядра – сравнительно молодая наука. Еще в конце XIX в. ничего не было известно об атомном ядре: атом считался мельчайшей неделимой частичкой вещества. Открытие в 1895 г. катодных и рентгеновских лучей и в 1896 г. естественной радиоактивности показало, что в устройстве атомов всех элементов есть что-то общее. Все они, например, содержат и при известных условиях могут испускать электроны е, а самые тяжелые из них обладают свойствами α-, β- и γ-радиоактивности.

Историческая справка

- \cdot 8 ноября 1895 года Вильгельм Рентген (первый в истории физики лауреат Нобелевской премии) открыл X лучи (рентгеновское излучение).
 - 1896 первое явление в области ядерной физики (естественная радиоактивность).
 - 1897 открытие электрона.
 - · 1904 Томпсон предложил модель атома («пудинговая модель»)
 - · 1911 Резерфорд исследовал рассеяние α- частиц
 - 1919 Астон открыл изотопы атомов (Мат разные, но химические свойства одинаковые).
 - 1919 Резерфорд доказал, что в состав каждого атома входит ядро водорода протон.
 - · 1932 открыт нейтрон (Чедвик).
 - 1932 Иваненко предложил протонно-нейтронную модель ядра.
 - · 1939 Ган и Штрассман открыли цепную реакцию ядер урана
 - 1942 запущен первый ядерный реактор под руководством Э.Ферми.
- · 1953 Рейнес и Коуэн впервые зарегистрировали предсказанную теорией в 1931 году частицу— нейтрино.
 - 1964 Гелл-Ман, Цвейг выдвинули гипотезу о кварковой модели ядра.
 - · 1994 открыт последний 6-й кварк (t кварк).
 - 10 февраля 2000 года получена кварк глюонная плазма.
- · 21 июля 2000 года в лаборатории Ферми возле Чикаго впервые зарегистрировали t нейтрино, после предсказания Паули. Всего существует 3 типа нейтрино: электронное, мюонное, t- нейтрино.
- \cdot К 2025 году открыли 118-й элемент таблицы Д. И. Менделеева. В настоящее время известно \sim 400 элементарных частиц.

Кварки и лептоны - истинно элементарные частицы. Таких частиц существует 3 типа: кварки, лептоны, переносчики взаимодействия (глюоны, фотоны, гравитоны). Одним из основных свойств всех элементарных частиц является их взаимодействие между собой.

Обычно различают 4 типа взаимодействия:

1. Сильное взаимодействие (ядерное). С помощью этого взаимодействия удерживаются в ядре протоны и нейтроны. Частицы, участвующие в сильном взаимодействии называются адроны. *Зарипова Ю.А.*Yuliya.Zaripova@kaznu.edu.kz

Характерное время процессов взаимодействия в этом случае $t\sim 10^{23}$ с. За счет сильного взаимодействия протоны притягиваются, а не отталкиваются согласно закону Кулона.

- 2. Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом. С помощью электромагнитного взаимодействия объясняются упругие силы, силы трения, химическое взаимодействие и т.д. Характерное время взаимодействия $t_{\rm вз} \sim \! 10^{-20}$ с. Электромагнитное взаимодействие дальнодействующее.
- 3. Слабое взаимодействие. Этим типом взаимодействия объясняется β распад атома. Характерное время взаимодействия в этом случае $t\sim10^{-6}$ - 10^{14} с. Частицы, участвующие в слабом взаимодействии также называются лептонами.
- 4. Гравитационное взаимодействие является универсальным для частиц, обладающих массой. Характерные расстояния $R{\sim}10^{-33}$ см.

Все типы взаимодействия отличаются по интенсивности. Самое сильное – это сильное взаимодействие.

Основная часть: Все атомные ядра можно разделить на стабильные и радиоактивные. Стабильные ядра остаются неизменными неограниченно долго, радиоактивные испытывают самопроизвольные превращения. Основными характеристиками стабильного ядра являются массовое число A, электрический заряд Z, масса M (и энергия связи), радиус R, спин I, магнитный момент, квадрупольный электрический момент, изотопический спин T, четность волновой функции P. Радиоактивные ядра дополнительно характеризуются типом радиоактивного превращения, периодом полураспада $T_{1/2}$, энергией испускаемых частиц и т.п.

Атомное ядро может находиться в различных энергетических состояниях. Состояние с наименьшей энергией называется основным, остальные возбужденными. Основное состояние стабильного ядра стационарно. Возбужденные состояния любого ядра (в том числе стабильного) нестационарны (испытывают у-переход и др.).

В числе первых дадим понятие нуклона, как основного «кирпичика» атомного ядра.

НУКЛОН [лат. nucleus - ядро] — общее наименование для нейтронов и протонов - частиц, из которых построены все ядра атомов. Предполагается, что нуклон имеет два зарядовых состояния, одно из которых с положительным единичным электрическим зарядом называется **протон**, а второе электрически нейтральное называется **нейтрон**.

Примеры:

- Нуклон $\equiv \mathbf{p}$ протон, стабильная частица с зарядом $\mathbf{q} = + \mathbf{e}$ и с массой $\mathbf{m}_p \mathbf{c}^2 \approx 938,2$ МэВ.
- Нуклон \equiv **n** нейтрон, радиоактивная частица с временем жизни 16,9 мин, с зарядом q = 0 и массой $m_n c^2 \approx 939,5$ МэВ. Распадается по формуле

$$n \to p + e^{-} + \widetilde{\nu}_{e}, \tag{1}$$

где $\widetilde{\mathcal{V}}_{\rm e}$ - электронное антинейтрино. При распаде нейтрона выполняются законы сохранения электрического заряда, барионного и лептонного квантовых чисел.

• Нуклон вне ядра и нуклон внутриядерный: их свойства неодинаковы. Это называется ЕМСэффектом (European Meson Collaboration) - отличие размеров свободного нуклона и нуклона внутри ядра. Кроме того, известен и другой феномен - нейтрон свободный нестабилен, а в ядре - стабилен.

Далее дадим понятия ближайшим к ядру надструктурам – атому и нуклиду. Это тем более необходимо, т.к. понятие «нуклид» вообще вышло из ядерной физики и часто употребляется в радиоэкологии, радиационной безопасности и дозиметрии.

АТОМ [греч. ατομ - неделимый] - это структура материи, представляющая собой микрочастицу, состоящую из положительно заряженного ядра и движущихся вокруг него отрицательно заряженных электронов, связанных между собой электромагнитным взаимодействием.

Примеры:

- В настоящее время уже открыты химические элементы (атомы) с Z от 1 до 118 (от водорода до оганесон).
- Атомы одного и того же химического элемента, ядра которых содержат различное число нейтронов, называются нуклидами.

НУКЛИД $_{N}$ A Y_{Z} – это атом химического элемента Y, состоящий из ядра с определенным числом протонов Z и определенным числом нейтронов N и числа электронов, равного числу протонов, которые связываются с ядром посредством электромагнитных сил.

Примеры:

• Таким образом, масса нуклида M_Y равна массе ядра M(Z,N) плюс массе Z электронов Zm_e минус массовый эквивалент энергии связи $B_e(Z)$ всех электронов в оболочках атома

$$M_Y = M(Z,N) + Zm_e - B_e(Z).$$
 (2)

- Нуклидом является атом 0^1 H₁, то есть ядро водорода плюс его орбитальный электрон.
- Атомы $_8{}^{16}\text{O}_8$ и $_9{}^{17}\text{O}_8$, то есть изотопы шестнадцатого и семнадцатого кислорода плюс их орбитальные электроны.

Одной из интересных иллюстраций понятия «нуклид» может быть вопрос: «Правильна ли химическая формула воды H_2O ?». Корректный ответ на этот вопрос с позиций понятия «нуклид» - «Нет!». В самом деле, молекула воды состоит из одного атома кислорода и двух атомов водорода, расположенных по линиям связи с кислородом под углом около 104° . В природной естественной смеси изотопов существуют три изотопа водорода (^{1}H , $^{2}H(D)$, $^{3}H(T)$) и три изотопа кислорода (^{16}O , ^{17}O , ^{18}O). Заметим, что концентрация трития до периода испытаний термоядерного оружия была ничтожно мала, а после этого периода — весьма заметна! Помещая последовательно в молекулу воды разные сочетания нуклидов водорода и кислорода, получим следующие правильные формулы воды (табл. 1).

Из этих формул видно, что формула H_2O совершенно не отражает истинного положения вещей, т.к. различные сочетания нуклидов разных типов дают совершенно разные физико-химические свойства полученного вещества, называемого обычно водой.

Таблица 1 – Химические нуклидные формулы природной элементарной воды

1.	¹ H ₂ ¹⁶ O	Питьевая	7.	³ H ₂ ¹⁶ О или Т ₂ ¹⁶ О	Ядовита	13.	¹ HT ¹⁶ O	Ядовита
2.	${}^{1}\text{H}_{2}{}^{17}\text{O}$	Питьевая	8.	$T_2^{17}O$	Ядовита	14.	¹ HT ¹⁷ O	Ядовита
3.	${}^{1}\mathrm{H}_{2}{}^{18}\mathrm{O}$	Питьевая	9.	T ₂ ¹⁸ O	Ядовита	15.	1HT18O	Ядовита
4.	² H ₂ ¹⁶ O или D ₂ ¹⁶ O	Ядовита	10.	¹ HD ¹⁶ O	Ядовита	16.	DT ¹⁶ O	Ядовита
5.	D ₂ ¹⁷ O	Ядовита	11.	¹ HD ¹⁷ O	Ядовита	17.	DT ¹⁷ O	Ядовита
6.	D ₂ ¹⁸ O	Ядовита	12.	1HD18O	Ядовита	18.	DT ¹⁸ O	Ядовита

Продолжим перечисление общих понятий ядерной физики.

ЯДРО АТОМА $_{N}{}^{A}X_{Z}$ — это структура материи, представляющая собой микрочастицу, состоящую из нуклонов с различными зарядовыми состояниями (N нейтронов и Z протонов), связанных ядерными силами, то есть сильными взаимодействиями.

Примеры:

- Значение ядерных сил на расстояниях, порядка размеров ядра, т.е. 10^{-13} см, или 10^{-15} м, превосходит силы электрического отталкивания между положительно заряженными протонами примерно в десять тысяч раз.
- Ядра первого химического элемента водорода: 1 Н имеет Z=1, N=0; последующие изотопы 2 Н(D), 3 Н(T), 4 Н, 5 Н, ..., сохраняя неизменным Z, наращивают последовательно число нейтронов каждый на единицу.
- Для тяжелых ядер: 107 Ag, Z = 47, N = 60; 197 Au, Z = 79, N = 118.

Теперь дадим систему понятий, характеризующих состав ядра.

ЗАРЯДОВОЕ ЧИСЛО ЯДРА Z (ПОРЯДКОВЫЙ НОМЕР ЯДРА) – это количество протонов в ядре, то есть атомный номер химического элемента в периодической таблице Менделеева.

Примеры:

- Электрический заряд ядра q с зарядовым числом Z равен: q = Ze, где e элементарный электрический заряд.
- В ядре Na_{11} зарядовое число Z = 11.
- У ядра $Sb_{51} Z = 51$.

МАССОВОЕ ЧИСЛО ЯДРА A – это полное число нуклонов (Z протонов плюс N нейтронов) в ядре: A = Z + N.

Примеры: У ядра ${}_0{}^1{\rm H}_1$ A=1. У ядра ${}_{60}{}^{107}{\rm Ag}_{47}$ A=107. У ядра ${}_{118}{}^{197}{\rm Au}_{79}$. A=197.

АТОМНАЯ ЕДИНИЦА МАССЫ аем – это 1/12 часть массы ядра углерода ¹²С

1 aem =
$$M_{12C}/12 = (1,660531 \pm 0,000011) \bullet 10^{-24} \, \Gamma. = 931,48 \, \text{M} \circ \text{B}.$$
 (3)

Примеры:

- Атомная масса ядра 12 С равна 12,000 000 000 аем; его масса в граммах равна $M_{12C} = 12 \bullet 1,660 \bullet 10^{-24} = 1,992 \bullet 10^{-23}$ г.
- Энергетический эквивалент массы в 1 аем равен: 1 аем \equiv (931,4812 \pm 0,0052) МэВ; таким образом, $M_{12C} = 12 \bullet 931,4812 = 11177,774$ МэВ.
- Масса протона равна $m_p = 1,0078252$ аем = $1,673 \bullet 10^{-24}$ $\Gamma = 938,770$ МэВ. Масса нейтрона $m_n = 1,008665$ аем = $(1,674920 \pm 0,000011) \bullet 10^{-24}$ $\Gamma = 939,5527$ МэВ.

МАССА ЯДРА М(N^A X_Z) – это масса нуклида минус масса всех атомных электронов и плюс их суммарная энергия связи с ядром.

Примеры:

• Экспериментально измеряется масса нуклида. Однако почти вся масса нуклида сосредоточена в ядре, поэтому, пользуясь экспериментальными таблицами масс нуклидов, можно говорить о массе ядра

$$M(N^{A}X_{Z}) = M(N^{A}Y_{Z}) - Zm_{e} + B_{e}(Z).$$
 (4)

С точностью 0,05% для 1H_1 и 0,02% для $^{238}U_{92}$ можно считать массой ядра значение атомной массы соответствующего нуклида

$$M(N^{A}X_{Z}) = M(N^{A}Y_{Z}).$$

$$(5)$$

- Масса нуклида ${}^{1}{\rm H}_{1}$ равна ${\rm M}({}_{0}{}^{1}{\rm H}_{1})=1,007825$ аем, что на 0,05% превышает массу протона (см. выше).
- Масса ядра ¹²С равна 12 аем.

ИЗОТОПЫ – ядра, имеющие одно и то же Z, при разных N и A.

Примеры:

- В области легких ядер: ¹⁰₅В₅ и ¹¹₆В₅.
- В области тяжелых ядер: ²⁰⁵123Pb₈₂ и ²⁰⁸126Pb₈₂.
- В изотопическом ряду урана: $^{235}_{143}$ U₉₂ и $^{238}_{146}$ U₉₂.

ИЗОТОНЫ – ядра, имеющие одно и то же N, при разных Z и A.

Примеры:

- ⁴⁰₂₀Ca₂₀ и ⁴²₂₀Ti₂₂.
- $^{174}_{100}$ W₇₄ и $^{170}_{100}$ Yb₇₀.
- $^{222}_{136}$ Rn₈₆ и $^{228}_{136}$ U₉₂.

 ${\bf ИЗОБАРЫ}$ – ядра, имеющие одно и то же A, при разных Z и N.

Примеры:

- ⁷₄Li₃ и ⁷₃Be₄.
- ⁷⁰40Zn₃₀ и ⁷⁰38Ge₃₂.
- ²³²₁₄₂Th₉₀ и ²³²₁₄₀U₉₂.

ИЗОМЕРЫ – возбужденные ядра с одинаковыми количествами протонов и нейтронов по сравнению с ядром в основном состоянии, но имеющие большое время жизни в возбужденном метастабильном энергетическом состоянии.

Примеры:

- Таким образом, изомер не является новым нуклидом; он обязательно переходит в основное состояние ядра в соответствии со своим периодом полураспада.
- Гафний-изомер 181m Hf; $T_{1/2} = 45,00$ дней. Этого вещества нет на Земле, но в ОИЯИ (г. Дубна) его на пучке ускорителя наработали в заметных количествах.
- $^{69\text{m}}_{39}\text{Zn}_{30}$, $T_{1/2} = 46.5$ ч.; $^{115*}\text{In}_{49}$ уровень 335 кэВ со спином $^{1}\!\!/_{2}$.

ЧЕТНО-ЧЕТНЫЕ ЯДРА – это ядра, состоящие из четного числа протонов Z=0, 2, 4, ... и четного числа нейтронов N=0, 2, 4, ...

Примеры:

- ${}^{12}_{6}C_{6}$.
- ⁴⁴₂₄Ca₂₀.
- $^{142}82$ Nd₆₀.

НЕЧЕТНО-НЕЧЕТНЫЕ ЯДРА – это ядра, состоящие из нечетного числа протонов $Z=1,3,5,\dots$ и нечетного числа нейтронов $N=1,3,5,\dots$

Примеры:

- ¹⁰₅B₅.
- 58₃₁Co₂₇.
- ²⁰⁸125Bi₈₃.

ЧЕТНО-НЕЧЕТНЫЕ ЯДРА – это ядра, состоящие из четного числа протонов Z=0, 2, 4, ... и нечетного числа нейтронов N=1, 3, 5, ...

Примеры:

- $^{13}{}_{7}\text{C}_{6}$.
- ⁵⁷31Fe₂₆.
- ¹³⁵₇₉Ba₅₆.

НЕЧЕТНО-ЧЕТНЫЕ ЯДРА – это ядра, состоящие из нечетного числа протонов Z=1,3,5,... и четного числа нейтронов N=0,2,4,... .

Примеры:

- $^{15}8N_{7}$.
- ⁶⁵₃₆Cu₂₉.
- ¹⁷⁵₁₀₄Lu₇₁.

В любой структуре материи можно выделить ряд ее физических параметров, которые основаны только на законах сохранения (энергии, импульса, числа частиц и т.п.). Т.е. эти параметры никак не

связаны с внутренним составом, структурой и динамикой внутреннего движения, т.е. со всем тем, что принято называть физическойой моделью. Применительно к ядерной физике перечислим эти безмодельные параметры и дадим формулировки соответствующих понятий.

ЭНЕРГИЯ СВЯЗИ ЯДРА – это энергия, необходимая для полного расщепления ядра на отдельные, составляющие его, протоны и нейтроны, то есть энергия, равная работе по удалению их на бесконечность друг от друга

$$\Delta W = \{ [ZM_p + NM_n] - M(Z,N) \} c^2.$$
 (6)

Примеры:

• Так как реально измеряются не массы ядер, а массы атомов, то строгую формулу для ΔW лучше переписать в виде

$$\Delta W = \{ [ZM_H + NM_n] - M_{ar}(Z,N) \} c^2.$$
 (7)

Удивительные, обнаруженные экспериментально, ядерные свойства позволили полуэмпирически вывести формулу для вычисления энергии связи – формулу Вейцзеккера

$$\varepsilon(A) = a_1 A - a_2 A^{2/3} - a_3 Z^2 A^{-1/3} - a_4 \frac{(A - 2Z)^2}{A} - a_5 \frac{\delta}{A^{3/4}}, \quad (8)$$

где a_1 =15,75 МэВ – коэффициент объемной энергии связи; a_2 =17,8 МэВ – коэффициент поверхностной энергии связи; a_3 =0,710 МэВ – коэффициент кулоновской энергии связи; a_4 =23,7 МэВ – коэффициент симметрической энергии связи; a_5 = -34 МэВ – коэффициент спаривательной энергии связи. Ясно, что, имея 5 свободных подгоночных параметров в формуле, можно идеально подогнать расчетные энергии связи к экспериментальным. Те из физических взаимодействий, которые не вошли в формулу, будут просто перенормированы в указанных пяти коэффициентах.

Физический смысл каждого члена в формуле Вейцзеккера следующий. Коэффициент a_1 учитывает *свойство короткодействия* ядерных сил; само же понятие о короткодействии исторически получено из экспериментальных фактов. А именно, первое

$$E_{cb} \approx 8 \text{ M}_{9}B/_{HYKЛOH} \approx \text{const};$$
 (9)

Второе, плотность вещества ядра

$$\rho \approx 0.137 \, \Gamma/\Phi$$
ерми³ \approx const. (10)

Коэффициент a_2 учитывает *свойство несжимаемости* ядерной материи, делающее ядро похожим на каплю жидкости. При этом энергия связи объемная должна уменьшиться на величину поверхности ядерной капли. Коэффициент a_3 учитывает очевидное *свойство электростатического отталкивания* протонов внутри ядра. Коэффициент a_4 учитывает *свойство отклонения числа* протонов от числа нейтронов в ядре. Физическая природа уменьшения энергии связи для ядер с $Z \neq N$ до сих пор не ясна. Коэффициент a_5 учитывает эффект спаривания пар протонов и пар нейтронов, т.е. связан с эффектом четности-нечетности барионного числа (барионного заряда).

УДЕЛЬНАЯ ЭНЕРГИЯ СВЯЗИ ϵ – это величина, равная средней энергии связи данного ядра, приходящейся на один нуклон

$$\varepsilon = \Delta W/A. \tag{11}$$

Примеры:

- Удельная энергия связи дейтрона ${}^{2}\text{H}_{1}$ равна $\varepsilon = 2,224 \text{ МэВ/2}$ нуклона = 1,112 МэВ/нуклон.
- Удельная энергия связи 238 U $_{92}$ равна $\epsilon = 1801,652$ МэВ/238 нуклонов = 7,670 МэВ/нуклон.
- Функция ε(A) имеет максимум в районе средних масс. Этот экстремум и дает физические основания для термоядерной и ядерной энергетики.

ИЗБЫТОК МАССЫ ЯДРА Δ - это разность между массой ядра в атомных единицах массы M и его массовым числом A

$$\Delta = M - A. \tag{12}$$

Примеры:

- Реально избыток массы определяется как разность между экспериментально определенной массой атома (нуклида) и массовым числом; например, избыток массы нейтрона $\Delta_n \equiv \Delta(0,1) = (1,008665-1)$ аем х 931,4812 МэВ/аем = 8,071 МэВ; избыток массы протона $\Delta_p \equiv \Delta(1,0) = (1,007825-1)$ аем х 931,4812 МэВ/аем = 7,289 МэВ; избыток массы дейтрона $\Delta_d \equiv \Delta(1,2) = (2,014102-2)$ аем х 931,4812 МэВ/аем = 13,135 МэВ.
- Масса нуклида (ядра) очень просто выражается через массовое число A и избыток массы данного ядра $\Delta(Z,A)$

$$M(Z,A) \equiv M(Z,N) = A + \Delta(Z,A). \tag{13}$$

• избыток массы изотопа урана $^{238}\mathrm{U}_{92}$ $\Delta_{\mathrm{U}} \equiv \Delta(92,238) = (238,050812 - 238)$ аем х 931,4812 МэВ/аем = 47,328 МэВ.

Заключение:

Ядерная физика — это фундаментальная область знаний, лежащая в основе современных представлений о материи и взаимодействиях. С момента открытия радиоактивности и структуры атомного ядра человечество прошло путь от первых моделей атома до квантово-полевых теорий элементарных частиц. Мы рассмотрели ключевые понятия и параметры, характеризующие атомное ядро, включая нуклоны, изотопы, изобары, изомеры, а также ядерные взаимодействия и энергию связи. Понимание этих основ необходимо не только для дальнейшего изучения физики, но и для прикладных задач — от медицины и экологии до энергетики и обороны. Таким образом, ядерная физика — это не только теория, но и основа высокотехнологического будущего.

Контрольные вопросы:

1) Какие типы фундаментальных взаимодействий существуют в природе и какое из них удерживает протоны и нейтроны в атомном ядре?

- 2) Чем отличаются изотопы, изобары, изотоны и изомеры друг от друга? Приведите примеры.
- 3) Каковы основные физические характеристики стабильных и радиоактивных ядер?
- 4) Что такое нуклид и как он отличается от атома и изотопа?
- 5) В чём заключается физический смысл членов формулы Вейцзеккера для энергии связи ядра?
- 6) Докажите, что энергия связи атомного ядра может быть выражена через массу атома согласно формуле (7).

Список использованных источников:

- 1. Юшков А.В., Жусупов М.А. Физика атомных ядер. Алматы: Парус, 2007. 735 с.
- 2. Мухин К.Н. Экспериментальная ядерная физика. СПб.: Лань, 2009. 384 с.
- 3. Кислов, А. Н. Атомная и ядерная физика: учеб. пособи. Екатеринбург: Изд-во Урал. ун-та, 2017. 271 с.
- 4. Черняев А.П., Белоусов А.В., Лыкова Е.Н. Взаимодействие ионизирующего излучения с веществом. М.: ООП физического факультета МГУ, 2019. 104 с.
 - 5. Fabjan C.W., Schopper H. Particle Physics Reference Library. Springer Cham, 2020. 1078 p.
 - 6. Бекман И.Н. Ядерная индустрия. М.: МГУ. https://profbeckman.narod.ru/NI.htm